AGRODEP Technical Note TN-01

A comparison between the PEP 1-1 model
 and the IFPRI standard model

Fousseini Traoré

AGRODEP Technical Notes are designed to document state-of-the-art tools and methods. They are circulated in order to help AGRODEP members address technical issues in their use of models and data. The Technical Notes have been reviewed but have not been subject to a formal external peer review via IFPRI's Publications Review Committee; any opinions expressed are those of the author(s) and do not necessarily reflect the opinions of AGRODEP or of IFPRI.

Contents

1. Foreword 2
2. Similarities 3
2.1. General structure 3
2.2. Institutions 3
2.3. Production. 3
2.4. Demand 3
2.5. International Trade 4
3. Differences 4
3.1. Production. 4
3.2. Home consumption 4
3.3. Commodity demand for investment purposes 5
3.4. Government expenditures. 5
3.5. Transfers 5
3.6. Taxes 5
3.7. Savings 6
3.8. International Trade 6
3.9. Closure rules 6
3.10. Data 8
4. Conclusion: 8
References 9
Appendix A: Summary table of the main characteristics of the models 10
Appendix B: The PEP 1-1 Model 12
Appendix C: The IFPRI standard model 20

1. Foreword

The Poverty and Economic Policy Research Network (PEP) model and the IFPRI standard model have become very popular in the last years among the community of modelers. Both models have been widely used by economists throughout the world for policy analysis.

The PEP model is an extension of the widely used EXTER model and is the result of collaboration between Bernard Decaluwé, André Lemelin, Hélène Maisonnave and Véronique Robichaud from the PEP network. Given that there is a series of PEP models, we will focus here only on the static single country general equilibrium model called PEP1-1 (1 period - 1 country), which is comparable to the IFPRI model. It is a general model prepared for PEP members and other modelers for policy analysis at the national level.

The IFPRI standard model is a result of a joint work by Hans Lofgren, Rebecca Lee Harris, Sherman Robinson, Moataz El-Said and Marcelle Thomas undertaken in 2002 (Lofgren et al., 2002) at the International Food Policy Research Institute (IFPRI) ${ }^{1}$. It is a standard general equilibrium model built with the aim of analyzing trade and food policy issues in developing countries.

The purpose of this document is to give a brief comparison between the two models, namely their main similarities and differences, particularly from a theoretical point of view. It is not a full description of these models. We highly recommend the reader to read the manuals and user guides which come with the models (see references in Appendix) in order to have a complete overview. We neither discuss in detail the presentation strategy adopted in the manuals (such as the mathematical derivation of the equations) nor the different files that constitute the models. The reader is also encouraged to visit the websites ${ }^{2}$ of the two institutions wherein he may find some training materials about the models and a series of studies which use them.

We first present the similarities between the two models and then highlight the main differences. We then provide a table which summarizes these results. In the appendix we present the full list of equations for both models.

[^0]
2. Similarities

The two models present many similarities:

2.1.General structure

Both models are single country static general equilibrium models. They adopt a Walrasian approach: perfect competition in all markets, only relative prices matter and all markets clear.

2.2.Institutions

Both models include the same institutions: households, enterprises, the government and the Rest of the world.

Households receive income from the factors of production, transfers from other institutions (enterprises, the government and the rest of the world). They spend their income on commodities, pay taxes, make transfers to other institutions and save.

Enterprises may receive payments from factors and transfers from other institutions. They allocate their income to transfers to other institutions, taxes and savings.

The government collects taxes, consumes commodities and makes transfers to other agents.
The Rest of the world receives payments for imports, from transfers from domestic agents, from factors and pays exports and makes transfers to domestic agents.

2.3.Production

On the production side, both models assume a nested production structure allowing the user to work with several categories of factors. At the top level, output is a function of intermediate input and value added; at the base level, value added is a Constant Elasticity of Substitution (CES) function of primary factors.

Both models allow the user to handle industries producing more than one product (rectangular social accounting matrices).

In both models the user has also the possibility to choose between industry-specific or fully mobile factors.

2.4.Demand

On the demand side, both models assume a Stone-Geary utility function for households (Linear Expenditure System function for the demand for goods).

Both models also take into account trade and transport margins in the final demand price system.

2.5.International Trade

Regarding international trade, both models assume a "small country" with exogenous world prices.

The two models also assume the Armington hypothesis of imperfect substitutability between imported and domestic goods. On the export side, it is also assumed that exported and domestic goods are imperfect substitutes in production.

3. Differences

There are also many differences between the two models. However these differences although large in terms of numbers, are not so substantial from a theoretical point of view. We present below the main distinctions.

3.1.Production

The first difference between the two models is related to the functional forms used in production. In the PEP model, there is no possibility of substitution between intermediate input and value added at the top level. The model assumes strict complementarity between the two elements (Leontieff Technology). The IFPRI model is a bit more flexible to this extent: the user has the choice between a CES or a Leontieff function. Furthermore, while the IFPRI model has a two stage nested production structure, the PEP one assumes a three stage level. In the IFPRI model, at the top level, total output is a (CES) or a Leontieff function of intermediate input and value added while at the base level value added is a CES function of primary factors. In the PEP model, at the top level, output is a Leontieff function of total intermediate input and value added while at the intermediate level value added is a CES function of composite labor and composite capital. At the base level, composite factors are CES functions of the primary factors. Composite labor is a CES function of the different categories of labor (unskilled labor, skilled labor...) and composite capital is a CES function of the different categories of capital (machinery and equipment, land...).

3.2.Home consumption

Another difference between the two models relies on how they take into account home consumption for agricultural products. As home consumption might be very high in developing countries, the user should be aware of this issue. While home consumption is absent from the PEP model, the IFPRI standard model takes it into account by valuing it at its opportunity cost (the activity specific producer price excluding transaction costs). One should note however that
even if the model takes into account home consumption, it implicitly assumes that the underlying farm household model is separable (recursive).

3.3.Commodity demand for investment purposes

Regarding investment demand, while in the PEP model investment demand is modeled as a Cobb Douglas function, the IFPRI standard model assumes a base year quantity multiplied by a fixed (exogenous) adjustment factor. With the IFPRI model specification, when investment demand is made endogenous by relaxing the adjustment factors, one will get a change in the same proportion in demand in all sectors. So commodity demand for investment purposes is not sensitive to relative price changes.

3.4.Government expenditures

In both models the total government consumption is fixed. In the PEP model, the government consumption is modeled with a Cobb Douglas function. In the IFPRI model, the government consumption demand is modeled like the investment demand: a base year quantity multiplied by a fixed (exogenous) adjustment factor. So, when made endogenous, the demand for all sectors will change uniformly.

3.5.Transfers

In both models government transfers to non-government agents are indexed to the Consumer Price Index. In the PEP model transfers are fixed at their initial value and then will automatically vary with the CPI unless the latter is used as the model numéraire. The indexation may be total, partial or absent. Furthermore, in the PEP model transfers from households to the government are related to social program contributions and are then treated like taxes with a marginal rate different from the average rate.

3.6.Taxes

In the PEP model all the taxes collected by the government are modeled separately. In that sense it is more detailed than the IFPRI model if the user wants to report detailed results on this topic. Income taxes are modeled in a flexible way. All income taxes are a linear function of total income allowing the marginal rate of taxation to be different from the average rate. The IFPRI model is also very flexible when it comes to modeling tax rates although there is no difference between the marginal and the average rate of taxation. For each institution, the direct tax rate is given by the exogenous base rate multiplied by an adjustment factor for scaling plus an additive
rate change ${ }^{3}$. This specification allows the user to test different closure rules regarding the government (see Table 1 below).

3.7.Savings

The two models also differ in the way they model marginal propensities to save for institutions. In the PEP model, households' savings are a linear (affine) function of their disposable income, indexed to the consumer price index. This specification is interesting as it avoids undesirable results in case some households exhibit negative savings in the SAM (such as an increase in savings when income falls). In IFPRI model, savings are a fixed proportion of disposal income and the marginal propensity to save is modeled in the same way like tax rates. For each institution, the marginal propensity to save is equal to the base rate adjusted for scaling for some selected institutions plus an additive rate change. As for the tax rates, this specification also allows the user to test different closure rules regarding institutions.

3.8.International Trade

It is important to note that although both models assume the small country hypothesis, the PEP model assumes finite price elasticity for the world demand for exports. With this specification the exported product by the country is not a perfect substitute of the competing products on world markets and local producers cannot increase their world market share unless they offer a Free on Board price smaller than the world price ${ }^{4}$.

3.9.Closure rules

One can also notice a few differences regarding the closure rules and how they are handled in practice.

In the PEP model, the default closure rule consists of savings driven investment, fixed current account, fixed current government expenditures, fixed stock variations, specific sector capital, perfect mobility of labor and a fixed nominal exchange rate. There are of course a lot of alternative closures that are possible and that the user may apply to the model. Furthermore, the way the tax rates and the saving rates are specified increases the number of options. However it is worth noting that the user needs to modify the GAMS codes himself when he wants to modify the default closure (with the exception of the capital market).

[^1]Table 1: Alternative closure rules for the IFPRI standard model

Government	Rest of the World	Savings-Investment	Factor market
GOV-1: Flexible government savings; fixed direct tax rates	ROW-1: Fixed savings; flexible exchange rate	SI-1: Fixed capital formation; uniform marginal propensity to save point change for selected institutions	FAC-1: Perfect mobility with exogenous factor supply
GOV-2: Fixed government savings; uniform direct tax rate point change for selected institutions	ROW-2: Flexible foreign savings;	Fixed real exchange rate	SI-2: Fixed capital formation; scaled marginal propensity to save for selected institutions
GOV-3:	FAC-2: Fully segmented markets		
Fixed government savings; scaled direct tax rates for selected institutions		SI-3: Flexible capital formation; fixed MPS for all non- government institutions	Unemployment with fixed wage rate and endogenous factor supply
		SI-4: Fixed investment and government consumption absorption shares (flexible quantities); uniform marginal propensity to save point change for selected institutions	

Source: Lofgren et al. (2002) and author.
In the IFPRI standard model, the default closure rule consists of investment driven savings, fixed foreign savings with flexible exchange rate, fixed volumes of government consumption, flexible government savings and perfect mobility of factors. Theoretically, the user has the choice between 90 closures that are all already programmed: 3 for the Government, 2 for the rest of the world 5 for the savings-investment balance and 3 for the factor market closure (see Table 1). This gives the user a great flexibility. For instance if one assumes fixed investment, one can assume either scaled or uniform marginal propensity to save point change for selected institutions.

One great difference between the two models is related to the absorption. The IFPRI model allows the user to handle more closures regarding the savings-investment balance. The model includes three equations defining total absorption, the ratio of investment to absorption and the ratio of government consumption to absorption. This specification gives flexibility to the user. It
makes it possible to share the adjustment burden to absorption shocks uniformly across all the components of absorption (SI-4 and SI-5 in Table 1) instead of being fully supported by households' consumption (SI-1 and SI-2 in Table 1) or by investment (SI-3 in Table 1).

Regarding the choice of the numéraire, one should note that the default numéraire is the nominal exchange rate for the PEP model while for the IFPRI standard model the user may choose between the consumer price index and the domestic price index.

3.10.Data

It is worth noting that the way the two models present Social accounting matrices is slightly different. For instance, in the PEP tradition, commodities appear twice in the SAM (for local supply and for export markets) in order to have exports at both producer and consumer prices. Although this is not an issue when calibrating the models, people from the PEP network and from francophone Africa might be more familiar with the PEP paradigm while other people would prefer the IFPRI model.

4. Conclusion:

To sum up, one can say that both models are built in the spirit of Walras within the same theoretical paradigm. The main differences between the two models are in the details, giving the user a great flexibility in the modeling strategy.

From a practical point of view, while in the PEP model, the user needs to write his own codes when he modifies the default options, in the IFPRI model all the options are already programmed. To that extent, modelers who are beginners and do not want to do extra programming might prefer the IFPRI model. Furthermore, the new version of the IFPRI model will have an excel interface allowing the user to define and run his own simulations without additional coding in GAMS.

It is also worth noting that both models are well documented. The PEP model comes with a detailed manual explaining the microeconomic foundations of the model with all the mathematical derivations on a step by step basis while the manual accompanying the IFPRI model tends to assume that the user is already familiar with those concepts. Therefore, we think that the PEP model and its accompanying documentation is more suitable for beginners. They offer the users both the mathematical and the economic foundations of CGE models in a rigorous way. The IFPRI model is more general and allows users to choose among many options. It
should be used by experienced users who are a bit familiar with CGE models, in order to avoid misinterpretations while combining different options. The role of these options (mainly closure rules) is discussed and illustrated in Laborde and Traoré (2012).

References

Decaluwé, B., A. Lemelin, H. Maisonnave and V. Robichaud (2009), The Pep Standard Computable General Equilibrium Model, Single-Country, Static Version Pep-1-1, second revised edition, Poverty and Economic Policy (PEP) Research Network, Laval, Canada.

Dervis, K., J. de Melo and S. Robinson (1982), General Equilibrium Models for Development Policy, Cambridge: Cambridge University Press.

Laborde, D and F. Traore (2012), "The sensitivity of CGE models to macroclosures: Evidence from the IFPRI Standard Model", AGRODEP Technical Note, forthcoming.

Lofgren, H., R. L. Harris and S. Robinson (2002): A Standard Computable General Equilibrium Model in GAMS. IFPRI Microcomputers in Policy Research 5, Washington DC.

Appendix A: Summary table of the main characteristics of the models

	Production	Prices	International trade	Demand
PEP 1-1	Aggregate output for each industry is a CET function of the goods produced by this industry Nested production structure Top level: output is a Leontieff function of total intermediate input and value added Intermediate level: Value added is a CES function of the composite labor and composite capital Base level: Composite factors are CES functions of the primary factors Intermediate inputs are strict complements	Final demand prices include trade margins Domestic prices for products that are traded are function of world prices, the exchange rate, and the taxes or subsidies	Small country assumption: exogenous world prices Finite price-elasticity of the world demand for exports Composite good is a CES function of domestic and imported commodity Total output is a CET function of domestic and exported products	Household maximize a Stone-Geary utility function (LES demand function) Investment expenditures of each commodity is a fixed share of total investment (Cobb-Douglas Function) Fixed government expenditures on goods and services Government expenditures of each commodity is a fixed share of total expenditures (CobbDouglas Function)
IFPRI	Aggregate marketed output for each commodity is a CES function of industry specific production of that commodity Aggregate production is the sum of marketed quantity and home consumption Nested production structure Top level: output is a (CES) or a Leontieff function of intermediate input and value added Base level: Value added is a CES function of primary factors Intermediate inputs are strict complements	Final demand prices include transaction costs/margins Domestic prices for products that are traded are function of world prices, the exchange rate, and the taxes or subsidies	Small country assumption: exogenous world prices Infinite price-elasticity of the world demand for exports Composite good is a CES function of domestic and imported commodity Total output is a CET function of domestic and exported products	Household maximize a Stone-Geary utility function (LES demand function) Fixed investment demand is a function of the base year quantity multiplied by a fixed adjustment factor Fixed government consumption is a function of base year quantity multiplied by a fixed adjustment factor

	Institutions	Equilibrium	Closure rules	Numéraire
PEP 1-1	Total household income is the sum of factor incomes, transfers from firms, from the government (indexed to the CPI) and from the rest of the world Household savings are a linear (affine) function of disposable income Firms income come from factor incomes and other institutions Total government revenue is the sum of revenues from taxes, factors and transfers from other institutions Fixed indirect and factors tax rates Income tax rates are linear (affine) functions of total income	All markets clear Total savings equal total investment (Gross fixed capital formation and stock changes)	Default closure: Savings driven investment Fixed current account Fixed stock variations Flexible real exchange rate Full employment of factors Perfect mobility of labor Sector specific capital Alternative closures regarding the Government, the savingsinvestment balance, the rest of the world and the factor markets up to the user	Nominal exchange rate
IFPRI	Total household income is the sum of factor incomes, transfers from firms, the government (indexed to the CPI) and from the rest of the world Marginal propensity to save is equal to the base rate adjusted by a factor for some selected institutions plus a point change Firms total income come from capital incomes and transfers Total government revenue is the sum of revenues from taxes, factors and transfers from other institutions Direct tax rate is given by the exogenous base rate multiplied by an adjustment factor for scaling for some selected institutions plus a point change	All markets clear Total savings equal total investment (Gross fixed capital formation and stock changes)	Default closure: Investment driven savings Fixed current account Flexible real exchange rate Fixed stock variations Full employment of factors Perfect mobility of factors 90 alternative closures (3 for the Government, 2 for the rest of the world, 5 for the savingsinvestment balance, 3 for the factor market; see Table 1) .	Consumer price index (the domestic price index may also be used)

Appendix B: The PEP 1-1 Model ${ }^{5}$

SETS

Industries and commodities

All industries: $j, j j \in J=\left\{J_{1}, \ldots, J_{j}, \ldots\right\}$
All commodities: $i, i j \in I=\left\{I_{1}, \ldots, I_{i}, \ldots\right\}$
Imported commodities: $m \in M \subset I ; M=\left\{M_{1}, \ldots, M_{m}, \ldots\right\}$
Non imported commodities: $n m \in N M \subset I ; N M=\left\{N M_{1}, \ldots, N M_{n m}, \ldots\right\} ; N M \cap M=\varnothing$
Exported commodities: $x \in X \subset I ; X=\left\{X_{1}, \ldots, X_{x}, \ldots\right\}$
Non exported commodities: $n x \in N X \subset I ; N X=\left\{N X_{1}, \ldots, N X_{n x}, \ldots\right\} ; N X \cap X=\varnothing$

Production factors

Labor categories: $l \in L=\left\{L_{1}, \ldots, L_{l}, \ldots\right\}$
Capital categories: $k \in K=\left\{K_{1}, \ldots, K_{k}, \ldots\right\}$

Agents

All agents: $a g, a g j \in A G=H \cup F \cup\{G V T, R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots F_{1}, \ldots, F_{f}, \ldots, G V T, R O W\right\}$
Household categories: $h, h j \in H \subset A G=\left\{H_{1}, \ldots, H_{h}, \ldots\right\}$
Firm categories: $f, f j \in F \subset A G=\left\{F_{1}, \ldots, F_{f}, \ldots\right\}$
Non governmental agent: agng $\in A G N G \subset A G=H \cup F \cup\{R O W\}=\left\{H_{1}, \ldots, H_{h}, \ldots F_{1}, \ldots, F_{f}, \ldots, R O W\right\}$
Domestic agents: agd $\in A G D \subset A G=H \cup F \cup\{G V T\}=\left\{H_{1}, \ldots, H_{h}, \ldots F_{1}, \ldots, F_{f}, \ldots, G V T\right\}$

VARIABLES

Volume variables

$C_{i, h}:$	Consumption of commodity i by type h households
$C_{i, h}^{M I N}:$	Minimum consumption of commodity i by type h households
$C G_{i}:$	Public consumption of commodity i
$C I_{j}:$	Total intermediate consumption of industry j
$D D_{i}:$	Domestic demand for commodity i produced locally
$D I_{i, j}:$	Intermediate consumption of commodity i by industry j
$D I T_{i}:$	Total intermediate demand for commodity i
$D S_{j, i}:$	Supply of commodity i by sector j to the domestic market
$E X_{j, x}:$	Quantity of product x exported by sector j
$E X D_{x}:$	World demand for exports of product x
$I M_{m}:$	Quantity of product m imported
$I N V_{i}:$	Final demand of commodity i for investment purposes
$K D_{k, j}:$	Demand for type k capital by industry j

[^2]| $K D C_{j}:$ | Industry j demand for composite capital |
| :--- | :--- |
| $K S_{k}:$ | Supply of type k capital |
| $L D_{l, j}:$ | Demand for type l labor by industry j |
| $L D C_{j}:$ | Industry j demand for composite labor |
| $L S_{l}:$ | Supply of type l labor |
| $M R G N_{i}:$ | Demand for commodity i as a trade or transport margin |
| $Q_{i}:$ | Quantity demanded of composite commodity i |
| $V A_{j}:$ | Value added of industry j |
| $V S T K_{i}:$ | Inventory change of commodity i |
| $X S_{j, i}:$ | Industry j production of commodity i |
| $X S T_{j}:$ | Total aggregate output of industry j |

Price variables

$e:$	Exchange rate11; price of foreign currency in terms of local currency
$P_{j, i}:$	Basic price of industry j 's production of commodity i
$P C_{i}:$	Purchaser price of composite comodity i (including all taxes and margins)
$P C I_{j}:$	Intermediate consumption price index of industry j
$P D_{i}:$	Price of local product i sold on the domestic market (including all taxes and $P E_{x}:$
$P E_{x}^{F O B}:$	Price received for exported commodity x (excluding export taxes)
$P I X C O N:$	Price of exported commodity x (in local currency)
$P I X G D P:$	Consumer price index
$P I X G V T:$	Public expenditures price index
$P I X I N V:$	Investment price index
$P L_{i}:$	Price of local product i (excluding all taxes on products)
$P M_{m}:$	Price of imported product m (including all taxes and tariffs)
$P P_{j}:$	Industry j unit cost, including taxes directly related to the use of capital and
$P T_{j}:$	labor, but excluding other taxes on production
$P V A_{j}:$	Basic price of industry $j ’$ output
$P W M_{m}:$	Price of industry j value added (including taxes on production directly
$P W X_{x}:$	related to the use of capital and labour)
$R R_{k, j}:$	World price of imported product m (expressed in foreign currency)
$R C_{j}:$	World price of exported product x (expressed in foreign currency)
$R K_{k}:$	Rental rate of type k capital in industry j
$R T I_{k, j}:$	Rental rate of industry j composite capital
$W V_{l}:$	Rental rate of type k capital (if capital is mobile)
$W C_{j}:$	Rental rate paid by industry j for type k capital, including capital taxes
$W T I_{l, j}:$	Wage rate of type l labor

Nominal (value) variables

$C A B:$	Current account balance
$C T H_{h}:$	Consumption budget of type h households
$G:$	Current government expenditures on goods and services
$G D P^{B P}:$	GDP at basic prices
$G D P^{F D}:$	GDP at purchasers' prices from the perspective of final demand
$G D P^{I B}:$	GDP at market prices (income-based)
$G D P^{M P}:$	GDP at market prices
$G F C F:$	Gross fixed capital formation

IT :	Total investment expenditures
$S F_{f}$:	Savings of type f businesses
SG	Government savings
$S H_{h}$:	Savings of type h households
SROW :	Rest-of-the-world savings
$T D F_{f}$:	Income taxes of type f businesses
TDFT	Total government revenue from business income taxes
TDH ${ }_{\text {\% }}$:	Income taxes of type h households
TDHT :	Total government revenue from household income taxes
TIC ${ }_{i}$:	Government revenue from indirect taxes on product i
TICT	Total government receipts of indirect taxes on commodities
TIK $_{k, j}$:	Government revenue from taxes on type k capital used by industry j
TIKT :	Total government revenue from from taxes on capital
TIM $_{m}$:	Government revenue from import duties on product m
TIMT:	Total government revenue from import duties
$T I P_{j}:$	Government revenue from taxes on industry j production (excluding taxes directly related to the use of capital and labor)
TIPT:	Total government revenue from production taxes (excluding taxes directly related to the use of capital and labor)
$\operatorname{TIW}_{l, j}$:	Government revenue from payroll taxes on type l labor in industry j
TIWT :	Total government revenue from payroll taxes
TIX_{x} :	Government revenue from export taxes on product x
TIXT:	Total government revenue from export taxes
TPRCTS	Total government revenue from taxes on products and imports
TPRODN	Total government revenue from other taxes on production12
TR ${ }_{\text {ag,agj }}$:	Transfers from agent $a g j$ to agent $a g$
$Y D F_{f}$:	Disposable income of type f businesses
YDH ${ }_{h}$:	Disposable income of type h households
$Y F_{f}$:	Total income of type f businesses
$Y F K_{f}$:	Capital income of type f businesses
YFTR $_{f}$: $^{\text {Pr }}$	Transfer income of type f businesses
$Y G:$	Total government income
YGK :	Government capital income
YGTR :	Government transfer income
$Y H_{h}$:	Total income of type h households
YHK ${ }_{h}$:	Capital income of type h households
YHL ${ }_{h}$:	Labor income of type h households
YHTR $_{n}$:	Transfer income of type h households
YROW :	Rest-of-the-world income

Parameters

$a i j i, j:$	Input-output coefficient
$B_{j}^{K D}:$	Scale parameter (CES - composite capital)
$B_{j}^{L D}:$	Scale parameter (CES - composite labor)
$B_{m}^{M}:$	Scale parameter (CES - composite commodity)
$B_{j}^{V A}:$	Scale parameter (CES - value added)
$B_{j, x}^{X}:$	Scale parameter (CET - exports and local sales)
$B_{j}^{X T}:$	Scale parameter (CET - total output)
$\beta_{k, j}^{K D}:$	Share parameter (CES - composite capital)
$\beta_{l, j}^{L D}:$	Share parameter (CES - composite labor)
$\beta_{m}^{M}:$	Share parameter (CES - composite commodity)
$\beta_{j}^{V A}:$	Share parameter (CES - value added)
$\beta_{j, x}^{X}:$	Share parameter (CET - exports and local sales)

$\beta_{j, i}^{X T}$:	Share parameter (CET - total output)
η :	Price elasticity of indexed transfers and parameters
$\gamma_{i}^{G V T}$:	Share of commodity i in total current public expenditures on goods and services
$\gamma_{i}^{\text {INV }}$:	Share of commodity i in total investment expenditures
$\gamma_{i, h}^{L E S}$:	Marginal share of commodity i in type h household consumption budget
$i o_{j}$	Coefficient (Leontief - intermediate consumption)
$\lambda_{a g, k}^{R K}$	Share of type k capital income received by agent ag
$\lambda_{\text {ag,agj }}^{T R}$:	Share parameter (transfer functions)
$\lambda_{h, l}^{W L}$	Share of type l labor income received by type h households
$\rho_{j}^{K D}$:	Elasticity parameter (CES - composite capital); $-1<\rho_{j}^{K D}<\infty$
$\rho_{j}^{L D}$:	Elasticity parameter (CES - composite labor); $-1<\rho_{j}^{L D}<\infty$
ρ_{m}^{M} :	Elasticity parameter (CES - composite commodity); $-1<\rho_{m}^{M}<\infty$
$\rho_{j}^{V A}$:	Elasticity parameter (CES - value added) ; $-1<\rho_{j}^{V A}<\infty$
$\rho_{j, x}^{X}$:	Elasticity parameter (CET - exports and local sales) ; $1<\rho_{j, x}^{X}<\infty$
$\rho_{j}^{X T}$:	Elasticity parameter (CET - total output) ; $1<\rho_{j}^{X T}<\infty$
$\sigma_{j}^{K D}$:	Elasticity of substitution (CES - composite capital); $0<\sigma_{j}^{K D}<\infty$
$\sigma_{j}^{L D}:$	Elasticity of substitution (CES - composite labor); $0<\sigma_{j}^{L D}<\infty$
σ_{m}^{M}	Elasticity of substitution (CES - composite commodity); $0<\sigma_{m}^{M}<\infty$
$\sigma_{j}^{V A}$:	Elasticity of transformation (CES - value added) ; $0<\sigma_{j}^{V A}<\infty$
$\sigma_{j, x}^{X}:$	Elasticity of transformation (CET - exports and local sales); $0<\sigma_{j, x}^{X}<\infty$
$\sigma_{x}^{X D}$:	Price elasticity of the world demand for exports of product x
$\sigma_{j}^{X T}$:	Elasticity of transformation (CET - total output) ; $0<\sigma_{j}^{X T}<\infty$
$s h 0_{h}$:	Intercept (type h household savings)
$s h 1_{h}$:	Slope (type h household savings)
$t m r g_{i, i j}$:	Rate of margin i applied to commodity $i j$
$\operatorname{tmrg}_{i, x}^{X}$:	Rate of margin i applied to exported commodity x
$t r 0_{h}$:	Intercept (transfers by type h households to government)
$\operatorname{tr} 1_{h}$:	Marginal rate of transfers by type h households to government
$t t d f 0_{h}$:	Intercept (income taxes of type f businesses)
$t t d f 1_{h}$	Marginal income tax rate of type f businesses
$t t d h 0_{h}$	Intercept (income taxes of type h households)
$t t d h 1_{h}$:	Marginal income tax rate of type h households
$t t i c_{i}$	Tax rate on commodity i
$t t i k_{k, j}$:	Tax rate on type k capital used in industry j
$\mathrm{ttim}_{\mathrm{m}}$:	Rate of taxes and duties on imports of commodity m
ttip $^{\text {j }}$:	Tax rate on the production of industry j
${t t i w_{l, j}}^{\text {: }}$	Tax rate on type l worker compensation in industry j
$t t i x^{\text {: }}$	Export tax rate on exported commodity x
v_{j} :	Coefficient (Leontief - value added)

EQUATIONS

Production

1. $V A_{j}=v_{j} X S T_{j}$
2. $C I_{j}=i o_{j} X S T_{j}$
3. $V A_{j}=B_{j}^{V A}\left[\beta_{j}^{V A} L D C_{j}^{-\rho_{j}^{V A}}+\left(1-\beta_{j}^{V A}\right) K D C_{j}^{-\rho_{j}^{V A}}\right]^{-\frac{1}{\rho_{j} A}}$
4. $L D C_{j}=\left[\frac{\beta_{j}^{V A}}{1-\beta_{j}^{V A}} \frac{R C_{j}}{W C_{j}}\right]^{\sigma_{j}^{V A}} K D C_{j}$
5. $L D C_{j}=B_{j}^{L D}\left[\sum_{l} \beta_{l, j}^{L D} L D_{l, j}^{-\rho_{j}^{L D}}\right]^{-\frac{1}{\rho_{j}^{L D}}}$
6. $L D_{l, j}=\left[\frac{\beta_{l, j}^{L D} W C_{j}}{W T I_{l, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{L D}\right)^{\sigma_{j}^{L D}-1} L D C_{j}$
7. $K D C_{j}=B_{j}^{K D}\left[\sum_{k} \beta_{k, j}^{K D} K D_{k, j}^{-\rho_{j}^{K D}}\right]^{-\frac{1}{\rho_{j}^{K D}}}$
8. $K D_{k, j}=\left[\frac{\beta_{k, j}^{K D} W C_{j}}{R T I_{k, j}}\right]^{\sigma_{j}^{L D}}\left(B_{j}^{K D}\right)^{\sigma_{j}^{K D}-1} K D C_{j}$
9. $D I_{i, j}=a i j_{i, j} C I_{j}$

Income and savings

Households

10. $Y H_{h}=Y H L_{h}+Y H K_{h}+Y H T R_{h}$
11. $Y H L_{h}=\sum_{l} \lambda_{h, l}^{W L}\left(W_{l} \sum_{j} L D_{l, j}\right)$
12. $Y H K_{h}=\sum_{k} \lambda_{h, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
13. YHTR $_{h}=\sum_{a g} T R_{h, a g}$
14. $Y D H_{h}=Y H_{h}-T D H_{h}-T R_{g v t, h}$
15. CTH $_{h}=Y D H_{h}-S H_{h}-\sum_{a g n g} T R_{a g n g, h}$
16. SH $_{h}=$ PIXCON $^{\eta} \operatorname{sh}_{h}+\operatorname{sh} 1_{h} Y D H_{h}$

Firms
17. $Y F_{f}=Y F K_{f}+Y F T R_{f}$
18. $Y F K_{f}=\sum_{k} \lambda_{f, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
19. YHTR $_{f}=\sum_{a g} T R_{f, a g}$
20. $Y D F_{f}=Y F_{f}-T D F_{f}$
21. $S F_{f}=Y D F_{f}-\sum_{a g} T R_{a g, f}$

Government

22. $Y G=Y G K+T D H T+T D F T+T P R O D N+T P R C T S+Y G T R$
23. $Y G K=\sum_{k} \lambda_{g v t, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)$
24. $T D H T=\sum_{h} T D H_{h}$
25. $T D F T=\sum_{f} T D F_{f}$
26. $T P R O D N=T I W T+T I K T+T I P T$
27. TIWT $=\sum_{l, j} T I W_{l, j}$
28. TIKT $=\sum_{k, j} T I K_{k, j}$
29. $T I P T=\sum_{j} T I P_{j}$
30. TPRCTS $=$ TICT + TIMT + TIXT
31. $T I C T=\sum_{i} T I C_{i}$
32. TIMT $=\sum_{m}$ TIM $_{m}$
33. $T I X T=\sum_{x} T_{I} X_{x}$
34. $Y G T R=\sum_{\text {agng }} T R_{\text {gvt, agng }}$
35. $T D H_{h}=P I X C O N{ }^{\eta} t t d 0_{h}+t t d 1_{h} Y H_{h}$
36. $T D F_{f}=$ PIXCON $^{\eta} t t d 0_{f}+t t d 1_{f} Y F K_{f}$
37. $\operatorname{TI}_{l, j}=t t i w_{l, j} W_{l} L D_{l, j}$
38. $T I K_{k, j}=t t i k_{k, j} R_{k, j} K D_{k, j}$
39. $T I P_{j}=t t i p_{j} P P_{j} X S T_{j}$
40. $T I C_{n m}=t t i c_{n m}\left(P L_{n m}+\sum_{i} P C_{i} t m r g_{i, n m}\right) D D_{n m}$
41. $T I C_{m}=$ ttic $_{m}\left[\left(P L_{m}+\sum_{i} P C_{i} t m r g_{i, m}\right) D D_{m}+\left(\left(1+t t i m_{m}\right) P W M_{m} e+\sum_{i} P C_{i} t m r g_{i, m}\right) I M_{m}\right]$
42. TII $_{m}=$ ttim $_{m}$ PWM $_{m}$ e $I M_{m}$
43. $\operatorname{TII}_{x}=$ ttix $_{x}\left(P E_{x}+\sum_{i} P C_{i} \operatorname{tmr} g_{i, x}^{X}\right) E X D_{x}$
44. $S G=Y G-\sum_{a g n g} T R_{a g n g, g v t}-G$

Rest of the world
45. YROW $=e \sum_{m} P W M_{m} I M_{m}+\sum_{k} \lambda_{r o w, k}^{R K}\left(\sum_{j} R_{k, j} K D_{k, j}\right)+\sum_{\text {agd }} T R_{\text {row,agd }}$
46. $S R O W=Y R O W-\sum_{x} P E_{x}^{F O B} E X D_{x}-\sum_{a g d} T R_{A G D, r o w}$
47. $S R O W=-C A B$

Transfers
48. $T R_{\text {agng }, h}=\lambda_{a g n g, h}^{T R} Y D H_{h}$
49. $T R_{g v t, h}=$ PIXCON $^{\eta} \operatorname{tr} 0_{h}+\operatorname{tr} 1_{h} Y H_{h}$
50. $T R_{a g, f}=\lambda_{a g, f}^{T R} Y D F_{f}$
51. TR $_{\text {agng }, g v t}=P I X C O N^{\eta} T R_{a g n g, g v t}^{0}$
52. $T R_{\text {agd,row }}=$ PIXCON $^{\eta} T R_{\text {agd, row }}^{0}$

TR

Demand

53. $C_{i, h} P C_{i}=C_{i, h}^{M I N} P C_{i}+\gamma_{i, h}^{L E S}\left(C T H_{h}-\sum_{i j} C_{i j, h}^{M I N} P C_{i j}\right)$
54. $G F C F=I T-\sum_{i} P C_{i} V S T K_{i}$
55. $P C_{i} I N V_{i}=\gamma_{i}^{I N V} G F C F$
56. $P C_{i} C G_{i}=\gamma_{i}^{G V T} G$
57. $D I T_{i}=\sum_{j} D I_{i, j}$
58. $M R G N_{i}=\sum_{i j} t m r g_{i, i j} D D_{i j}+\sum_{m} t m r g_{i, m} I M_{m}+\sum_{x} t m r g_{i, x}^{X} E X D_{x}$

Producer supplies of products and international trade

59. $X S T_{j}=B_{j}^{X T}\left[\sum_{i} \beta_{j, i}^{X T} X S_{j, i}^{\rho_{j}^{X T}}\right]^{\frac{1}{\rho_{j}^{X T}}}$
60. $X S_{j, i}=\frac{X S T_{j}}{\left(B_{j}^{X T}\right)^{1+\sigma_{j}^{X T}}}\left[\frac{P_{j, i}}{B_{j, i}^{X T} P T_{j}}\right]^{\sigma_{j}^{X T}}$
61. $X S_{j, x}=B_{j, x}^{X}\left[\beta_{j, x}^{X} E X_{j, x}^{\rho_{j, x}^{X}}+\left(1-\beta_{j, x}^{X}\right) D S_{j, x}^{\rho_{j, x}^{X}}\right]^{\frac{1}{\rho_{j, x}^{X}}}$
62. $X S_{j, n x}=D S_{j, n x}$
63. $E X_{j, x}=\left[\frac{1-\beta_{j, x}^{X}}{\beta_{j, x}^{X}} \frac{P E_{x}}{P L_{x}}\right]^{\sigma_{j, x}^{X}} D S_{j, x}$
64. $E X D_{x}=E X D_{x}^{0}\left[\frac{e P W X_{x}}{P E_{x}^{F O B}}\right]^{\sigma_{x}^{X D}}$
65. $Q M_{m}=B_{m}^{M}\left[\beta_{m}^{M} I M_{m}^{-\rho_{m}^{M}}+\left(1-\beta_{m}^{M}\right) D D_{m}^{-\rho_{m}^{M}}\right]^{-\frac{1}{\rho_{m}^{M}}}$
66. $Q_{n m}=D D_{n m}$
67. $I M_{m}=\left[\frac{\beta_{m}^{M}}{1-\beta_{m}^{M}} \frac{P D_{m}}{P M_{m}}\right]^{\sigma_{m}^{M}} D D_{m}$

Prices

Production

68. $P P_{j}=\frac{P V A_{j} V A_{j}+P C I_{j} C I_{j}}{X S T_{j}}$
69. $P T_{j}=\left(1+\right.$ ttip $\left._{j}\right) P P_{j}$
70. $P C I_{j}=\frac{\sum_{i} P C I_{i} D I_{i, j}}{C I_{j}}$
71. $P V A_{j}=\frac{W C_{j} L D C_{j}+R C_{j} K D C_{j}}{V A_{j}}$
72. $W C_{j}=\frac{\sum_{l} W T I_{l, j} L D_{l, j}}{L D C_{j}}$
73. $W T I_{l, j}=W_{l}\left(1+t t i w_{l, j}\right)$
74. $R C_{j}=\frac{\sum_{k} R T I_{k, j} K D_{k, j}}{K D C_{j}}$
75. $R T I_{k, j}=R_{k, j}\left(1+t t i k_{k, j}\right)$
76. $R_{k, j}=R K_{k} \quad$ if capital is mobile

International trade

77. $\stackrel{\text { ® }}{\text { P. }} \underset{j}{ }=\frac{\sum_{i} P_{j, i} X S_{j, i}}{X S T_{j}}$
78. $P_{j, x}=\frac{P E_{x} E X_{j, x}+P L_{x} D S_{j, x}}{X S_{j, x}}$
79. $P_{j, n x}=P L_{n x}$
80. $P E_{x}^{F O B}=\left(P E_{x}+\sum_{i} P C_{i} t m r g_{i, x}^{X}\right)\left(1+t t i x_{x}\right)$
81. $P D_{i}=\left(1+t t i c_{i}\right)\left(P L_{i}+\sum_{i j} P C_{i} t m r g_{i j, i}\right)$
82. $P M_{m}=\left(1+t t i c_{m}\right)\left(\left(1+t^{2} i m_{m}\right) e P W M_{m}+\sum_{i} P C_{i} t m r g_{i, m}\right)$
83. $P C_{m}=\frac{P M_{m} I M_{m}+P D_{m} D D_{m}}{Q M_{m}}$
84. $P C_{n m}=P D_{n m}$

Price indexes
85. PIXGDP $=\sqrt{\frac{\sum_{j} P V A_{j} V A 0_{j}}{\sum_{j} P V A 0_{j} V A 0_{j}} \frac{\sum_{j} P V A_{j} V A_{j}}{\sum_{j} P V A 0_{j} V A_{j}}}$
86. PIXCON $=\frac{\sum_{i} P C_{i} \sum_{h} c_{i, h}^{0}}{\sum_{i j} P C_{i j}^{0} \Sigma_{h} C_{i j, h}^{0}}$
87. PIXINV $=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{I N V}}$
88. PIXGVT $=\prod_{i}\left(\frac{P C_{i}}{P C_{i}^{0}}\right)^{\gamma_{i}^{G V T}}$

Equilibrium

89. $Q_{i}=\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+V S T K_{i}+$ DIT $_{i}+$ MRGN $_{i}$
90. $\sum_{j} L D_{l, j}=L S_{l}$
91. $\sum_{j} K D_{k, j}=K S_{k}$
92. $I T=\sum_{h} S H_{h}+\sum_{f} S F_{f}+S G+S R O W$
93. $\sum_{j} D S_{j, i}=D D_{i}$
94. $\sum_{j} E X_{j, x}=E X D_{x}$

Gross domestic product

95. $G D P^{B P}=\sum_{j} P V A_{j} V A_{j}+T I P T$
96. $G D P^{M P}=G D P^{B P}+T P R C T S$
97. $G D P^{I B}=\sum_{l, j} W_{l} L D_{l, j}+\sum_{k, j} R_{k, j} K D_{k, j}+$ TPRODN + TPRCTS
98. $G D P^{F D}=\sum_{i} P C_{i}\left[\sum_{h} C_{i, h}+C G_{i}+I N V_{i}+V S T K_{i}\right]+\sum_{x} P E_{x}^{F O B} E X D_{x}-e P W M_{m} I M_{m}$

Appendix C: The IFPRI standard model ${ }^{6}$

SETS

```
\(\alpha \in A\)
\(\alpha \in A C E S(\subset A)\)
\(\alpha \in A L E O(\subset A)\)
\(c \in C\)
\(c \in C D(\subset C)\)
\(c \in C D N(\subset C)\)
\(c \in C E(\subset C)\)
\(c \in C E N(\subset C)\)
\(c \in C M(\subset C)\)
\(c \in C M N(\subset C)\)
\(c \in C T(\subset C)\)
\(c \in C X(\subset C)\)
\(f \in F\)
\(i \in I N S\)
\(i \in I N S D(\subset I N S)\)
\(I \in I N S D N G(\subset I N S D)\)
\(h \in H(\subset I N S D N G)\)
```


PARAMETERS

$$
c w t s_{C}
$$

$d w t s_{c}$
$i c a_{c} a$
$i c d_{c}$,
ice $_{c}{ }^{\text {, }}$
icm_{c} c
inta $_{a}$
$i v a_{a}$
$m \overline{p s}$
$\mathrm{mpsO1}_{c}$
${ }^{p w e} e_{c}$
$p^{w_{c}}{ }_{c}$
$q d s t_{c}$
$\overline{q g}_{c}$
${\overline{q l n} v_{c}}$
shif ${ }_{i f}$
$s h i i_{i}{ }_{i}$,
$t a_{a}$
$t e_{c}$
t_{f}
$\overline{t i n s}$
tinsO1 $_{i}$

[^3]| tm_{C} | import tariff rate |
| :---: | :---: |
| $t q_{c}$ | rate of sales tax |
| trnsfrif | transfer from factor f to institution i |
| $t v a_{a}$ | rate of value-added tax for activity |
| α_{a}^{a} | efficiency parameter in the CES activity function |
| $\alpha_{a}^{v a}$ | efficiency parameter in the CES value-added function |
| $\alpha_{a}^{a c}$ | shift parameter for domestic commodity aggregation function |
| α_{c}^{q} | Armington function shift parameter |
| α_{c}^{t} | CET function shift parameter |
| $\beta_{a c h}^{h}$ | marginal share of consumption spending on home commodity c from activity a for household h |
| $\beta_{c h}^{m}$ | marginal share of consumption spending on marketed commodity c for household h |
| δ_{a}^{a} | CES activity function share parameter |
| $\delta_{a c}^{a c}$ | share parameter for domestic commodity aggregation function |
| δ_{c}^{q} | Armington function share parameter |
| δ_{c}^{t} | CET function share parameter |
| $\delta_{f a}^{v a}$ | CES value-added function share parameter for factor f in activity a |
| $\gamma_{c h}^{m}$ | subsistence consumption of marketed commodity c for household h |
| $\gamma_{a c h}^{h}$ | subsistence consumption of home commodity c from activity for household h |
| $\theta a c$ | yield of output c per unit of activity a |
| ρ_{a}^{a} | CES production function exponent |
| $\rho_{a}^{v a}$ | CES value-added function exponent |
| $\rho_{c}^{a c}$ | Domestic commodity aggregation function exponent |
| ρ_{c}^{q} | Armington function exponent |
| ρ_{c}^{t} | CET function exponent |

EXOGENOUS VARIABLES

$\overline{\overline{C P I}}$
$\overline{F S A V}$
$\overline{G A D J}$
IADJ
MPSADJ
$\overline{Q F S}_{f}$
TINSADJ
$\overline{W F D I S T}_{f} a$
consumer price index
change in domestic institution tax share $(=0$ for base; exogenous variable)
foreign savings (FCU)
government consumption adjustment factor
investment adjustment factor
savings rate scaling factor ($=0$ for base)
quantity supplied of factor
direct tax scaling factor (= 0 for base; exogenous variable) wage distortion factor for factor f in activity a

ENDOGENOUS VARIABLES

$D M P S$	change in domestic institution savings rates $(=0$ for base; exogenous variable $)$
$D P I$	producer price index for domestically marketed output government expenditures
$E H$	consumption spending for household $E X R$
$G O V S H R$	exchange rate $(L C U$ per unit of $F C U)$
$G S A V$	government consumption share in nominal absorption
$I N V S H R$	government savings

$M P S_{i}$	marginal propensity to save for domestic non- government institution (exogenous variable)
$P A_{a}$	activity price (unit gross revenue)
$P D D_{c}$	demand price for commodity produced and sold domestically
$P D S_{C}$	supply price for commodity produced and sold domestically
$P E_{C}$	export price (domestic currency)
PINTA $_{a}$	aggregate intermediate input price for activity a
$P M_{C}$	import price (domestic currency)
$P Q_{C}$	composite commodity price
$P V A_{a}$	value-added price (factor income per unit of activity)
$P X_{C}$	aggregate producer price for commodity
PXACa c	producer price of commodity c for activity a
$Q A_{a}$	quantity (level) of activity
$Q D_{c}$	quantity sold domestically of domestic output
$Q E_{C}$	quantity of exports
$Q F_{f} a$	quantity demanded of factor f from activity a
$Q G_{C}$	government consumption demand for commodity
$Q H_{c} h$	quantity consumed of commodity c by household h
$Q H A_{a c h}$	quantity of household home consumption of commodity c from activity a for household h
QINTA $_{a}$	quantity of aggregate intermediate input
$Q^{\prime} \mathrm{INT}_{c} a$	quantity of commodity c as intermediate input to activity a
QINV ${ }_{c}$	quantity of investment demand for commodity
$Q M_{C}$	quantity of imports of commodity
$Q Q_{c}$	quantity of goods supplied to domestic market (composite supply)
$Q T_{c}$	quantity of commodity demanded as trade input
$Q V A_{a}$	quantity of (aggregate) value-added
$Q X_{C}$	aggregated marketed quantity of domestic output of commodity
$Q X A C a c$	quantity of marketed output of commodity c from activity a
TABS	total nominal absorption
TINS_{i}	direct tax rate for institution $i(i \in I N S D N G)$
TRII ${ }_{i}{ }^{\text {, }}$	transfers from institution i ' to i (both in the set INSDNG)
$W F_{f}$	average price of factor f
$Y F_{f}$	income of factor f
$Y G$	government revenue
$Y I_{i}$	income of domestic nongovernment institution
YIF $i f$	income to domestic institution i from factor f

EQUATIONS

Price Block

$$
\begin{array}{ll}
P M_{c}=p w m_{c} \cdot\left(1+t m_{c}\right) \cdot E X R+\sum_{c^{\prime} \in C T} P Q_{c^{\prime}} \cdot i c m_{c^{\prime} c} & c \in C M \\
P E_{c}=p w e_{c} \cdot\left(1-t e_{c}\right) \cdot E X R-\sum_{c^{\prime} \in C T} P Q_{c^{\prime}} \cdot i c e_{c^{\prime} c} & c \in C E \\
P D D_{c}=P D S_{c}+\sum_{c^{\prime} \in C T} P Q_{c^{\prime}} \cdot i c d_{c^{\prime} c} & c \in C D \\
P Q_{c} \cdot\left(1-t q_{c}\right) \cdot Q Q_{c}=P D D_{c} \cdot Q D_{c}+P M_{c} \cdot Q M_{c} & c \in(C D \cup C M) \tag{4}
\end{array}
$$

$P X_{c} \cdot Q X_{c}=P D S_{c} \cdot Q D_{c}+P E_{c} \cdot Q E_{c}$

$$
\begin{equation*}
c \in C X \tag{5}
\end{equation*}
$$

$P A_{a}=\sum_{c \in C} P X A C_{a c} \cdot \theta_{a c}$
$a \in A$
PINTA $_{a}=\sum_{c \in C} P Q_{c} \cdot i c a_{c a}$
$a \in A$
$P A_{a} \cdot\left(1-t a_{a}\right) \cdot Q A_{a}=P V A_{a} \cdot Q V A_{a}+P I N T A_{a} \cdot Q I N T A_{a}$
$a \in A$
$\overline{C P I}=\sum_{c \in C} P Q_{c} \cdot c w t s c$
$D P I=\sum_{c \in C} P D S \cdot \cdot d w t s c$

Production and Trade Block

$$
\begin{array}{lc}
Q A_{a}=\alpha_{a}^{a} \cdot\left(\delta_{a}^{a} \cdot Q V A_{a}^{-\rho_{a}^{a}}+\left(1-\delta_{a}^{a}\right) \cdot Q I N T A_{a}^{-\rho_{a}^{a}}\right)^{-\frac{1}{\rho_{a}^{a}}} & a \in A C E S \\
\frac{Q V A_{a}}{Q I N T A^{\prime}}=\left(\frac{P_{I N T A a}}{P V A_{a}} \cdot \frac{\delta_{a}^{a}}{1-\delta_{a}^{a}}\right)^{\frac{1}{1+\rho_{a}^{a}}} & a \in A C E S \\
Q V A_{a}=i v a_{a} \cdot Q A_{a} & a \in A L E O \\
Q I N T A_{a}=\text { inta }_{a} \cdot Q A_{a} & a \in A L E O \\
\text { QINT }_{c a}=i c a_{c a} \cdot Q I N T A_{a} & a \in A \quad c \in C \\
Q X A C_{a c}+\sum Q H A_{a c h}=\theta_{a c} \cdot Q A a & a \in A \quad a \in C X
\end{array}
$$

Institution Block

$$
\begin{array}{ll}
Y F_{f}=\sum_{a \in A} W F_{f} \cdot \overline{W F D I S T}_{f a} \cdot Q F_{f a} & f \in F \\
\text { YIF }_{i f}=\text { shif }_{i f} \cdot\left[\left(1-t f_{f}\right) \cdot Y F_{f}-\text { trnsfrrow }_{f} \cdot E X R\right] & i \in I N S D \quad f \in F \tag{29}
\end{array}
$$

$$
\begin{align*}
& Y I_{i}=\sum_{f \in F} \text { YIF }_{i f}+\sum_{i^{\prime} \in I N S D N G} \text { TRII }_{i_{i}}+\text { trnsfr }_{i \text { gov }} \cdot \overline{C P I}+\text { trnsfr }_{\text {i row }} \cdot E X R \quad i \in \text { INSDNG } \tag{30}\\
& T R I I_{i i^{\prime}}=\operatorname{shii}_{i i^{\prime}} \cdot\left(1-M P S_{i^{\prime}}\right) \cdot\left(1-\operatorname{TINS}_{i^{\prime}}\right) \cdot Y I_{i^{\prime}} \quad i \in I N S D N G \quad i^{\prime} \in I N S D N G, \tag{31}\\
& E H_{h}=\left(1-\sum_{i \in I N S D N G} \operatorname{shili}_{i} h\right) \cdot\left(1-\text { MPS }_{h}\right) \cdot\left(1-\text { TINS }_{h}\right) \cdot Y I_{h} \quad h \in H \tag{32}
\end{align*}
$$

$P Q_{c} \cdot Q H_{c h}=P Q_{c} \cdot \gamma_{c h}^{m}+\beta_{c h}^{m} \cdot\left(E H_{h}-\sum_{c^{\prime} \in C} P Q_{c^{\prime}} \cdot \gamma_{c^{\prime} h}^{m}-\sum_{a \in A} \sum_{c^{\prime} \in C} P X A C_{a c^{\prime}} \cdot \gamma_{a c^{\prime} h}^{h}\right) \quad c \in C h \in H$
$P X A C_{a c} \cdot Q H A_{a c h}=P X A C_{a c} \cdot \gamma_{a c h}^{h}+\beta_{a c h}^{h} \cdot\left(E H_{h}-\sum P Q_{c^{\prime}} \cdot \gamma_{c^{\prime} h}^{m}-\sum_{a \in A} \sum_{c^{\prime} \in C} P X A C_{a c} \cdot \cdot \gamma_{a c^{\prime} h}^{h}\right) a \in A \quad c \in C \quad h \in H$
$Q I N V_{c}=\overline{I A D J} \cdot \overline{q I n v_{c}}$
$c \in C I N V$
$Q G_{c}=G A D J \cdot \overline{q g}_{c} \quad c \in C$
$Y G=\sum_{i \in I N S D N G} T I N S_{i} \cdot Y I_{i}+\sum_{f \in F} t f_{f} \cdot Y F_{f}+\sum_{a \in A} t v a_{a} \cdot P V A_{a} \cdot Q V A_{a}+\sum_{a \in A} t a_{a} \cdot P A_{a} \cdot Q A_{a}$
$+\sum_{c \in C M} t m_{c} \cdot p w m_{c} \cdot Q M_{c} \cdot E X R+\sum_{๔ \in C E} t e_{\dot{c}} p w e_{c} \cdot Q E_{\dot{c}} E X R$
$E G=\sum_{c \in C} P Q_{c} \cdot Q G_{c}+\sum_{\substack{i \in \operatorname{INSDNG}}}$ trnsfr $_{i \text { gov }} \cdot \overline{C P I}$

System Constraint Block

$$
\begin{array}{ll}
\sum_{a \in A} Q F_{f a}=Q F S_{f} & f \in F \\
Q Q_{c}=\sum_{a \in A} Q I N T_{c a}+\sum Q H_{c h}+Q G_{c}+Q I N V_{c}+q d s t_{c}+Q T_{c} & c \in C \tag{40}
\end{array}
$$

$\sum_{c \in C M} p w m_{c} \cdot Q M_{c}+\sum_{f \in F}$ trnsfrowf $=\sum_{c \in C E} p w e_{c} \cdot Q E_{c}+\sum_{i \in I N S D}$ trnsfn row $+\overline{F S A V}$
$Y G=E G+G S A V$
TINS $_{i}=$ tins $_{i} \cdot\left(1+\right.$ TINSADJ $\left.\cdot \operatorname{tins} 01_{i}\right)+$ DTINS $\cdot \operatorname{tins} 01_{i} \quad i \in$ INSDNG
$M P S_{i}=\overline{m p S_{i}} \cdot\left(1+\overline{M P S A D J} \cdot m p s 01_{i}\right)+D M P S \cdot m p s 01_{i} \quad i \in \operatorname{INSDNG}$
$\sum_{i \in I N S D N G} M P S_{i} \cdot\left(1-T I N S_{i}\right) \cdot Y I_{i}+G S A V+E X R \cdot \overline{F S A V}=\sum_{c \in C} P Q_{c} \cdot Q I N V_{c}+\sum_{c \in C} P Q_{c} \cdot q d s t_{c}$
$T A B S=\sum_{h \in H} \sum_{c \in C} P Q_{c} \cdot Q H_{c} h+\sum_{a \in A} \sum_{c \in C} \sum_{h \in H} P X A C_{a c} \cdot Q H A_{a}^{c h}+\sum P Q_{c} \cdot Q G_{c \in C}+\sum P Q_{c} \cdot Q I N V_{c}+\sum P Q_{c} \cdot q d s t_{c}$ (46)
INVSHR $\cdot T A B S=\sum_{c \in C} P Q_{c} \cdot I N V_{c}+\sum_{c \in C} P Q_{c} \cdot q d s t_{c}$
GOVSHR $\cdot T A B S=\sum_{c \in C} Q_{c} \cdot Q G_{c}$

[^0]: ${ }^{1}$ IFPRI is working on a new version of the model which will come soon. Given that this new version is still under construction, we will not focus on it here.
 ${ }^{2}$ http://www.pep-net.org/programs/mpia/pep-standard-cge-models/ and http://www.ifpri.org/publication/standard-computable-general-equilibrium-cge-model-gams-0

[^1]: ${ }^{3}$ Similar to a point change
 ${ }^{4}$ A similar specification can be found in Dervis, de Melo and Robinson (1982).

[^2]: ${ }^{5}$ Source: Decaluwé et al. (2009).

[^3]: ${ }^{6}$ Source: Lofgren et al. (2002).

